Piecewise Linear Wavelets Over Type-2 Triangulations

نویسندگان

  • Michael S. Floater
  • Ewald Quak
چکیده

Abstract: The idea of summing pairs of so-called semi-wavelets has been found to be very useful for constructing piecewise linear wavelets over refinements of arbitrary triangulations. In this paper we demonstrate the versatility of the semi-wavelet approach by using it to construct bases for the piecewise linear wavelet spaces induced by uniform refinements of four-directional box-spline grids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of wavelets and prewavelets over triangulations

Constructions of wavelets and prewavelets over triangulations with an emphasis of the continuous piecewise polynomial setting are discussed. Some recent results on piecewise linear prewavelets and orthogonal wavelets are presented. c © 2003 Elsevier Science B.V. All rights reserved.

متن کامل

Linear Independence and Stability of Piecewise Linear Prewavelets on Arbitrary Triangulations

In several areas of computational mathematics, wavelet-based algorithms are becoming popular for modelling and analyzing data, providing efficient means for hierarchical data decomposition, reconstruction, editing and compression. Such algorithms are typically based on the decomposition of function spaces into mutually orthogonal wavelet spaces, each of which is endowed with a basis. The basis ...

متن کامل

Optimal N-term approximation by linear splines over anisotropic Delaunay triangulations

Anisotropic triangulations provide efficient geometrical methods for sparse representations of bivariate functions from discrete data, in particular from image data. In previous work, we have proposed a locally adaptive method for efficient image approximation, called adaptive thinning, which relies on linear splines over anisotropic Delaunay triangulations. In this paper, we prove asymptotical...

متن کامل

Haar Wavelets on Spherical Triangulations

We construct piecewise constant wavelets on spherical triangulations, which are orthogonal with respect to a scalar product on L(S), defined in [3]. Our classes of wavelets include the wavelets obtained by Bonneau in [1] and by Nielson et all. in [2]. We also proved the Riesz stability and showed some numerical experiments.

متن کامل

Planelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images

With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999